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Abstract
The validity of a perturbative approach to studying the lifetime of excited
electrons in an electron gas is analysed in a range of metallic densities. The
relaxation rate is calculated using a kinetic theory framework with second-
order Born and partial-wave approximations for the scattering amplitude. The
comparison of the terms obtained by physically motivated Thomas–Fermi-
type potentials shows that the next-to-leading correction to the first-order
result is small only for high densities of the electron gas. At low densities,
a nonperturbative estimation of the relaxation rate is needed. An analytic
expression of practical use which incorporates both the role of screening
and scattering is derived. A comparison with experimental data obtained
for an Ag(111) surface is made. The agreement found supports an inherent
consistency, under the experimental conditions and down to (E −EF) = 0.4 eV,
of the theoretical description based on a three-dimensional Fermi-liquid model.

1. Introduction

In the many-body problem of extended fermionic systems, like metals, an important quantity
is the lifetime of an excited state. It is proved [1] to all orders of field-theoretical perturbation
theory in a well-behaved interaction, that the inverse lifetime, i.e., the scattering rate, becomes
(1/τee) = a(E − EF)

2 (atomic units are used throughout) for excited-state energy E above,
but close to, the Fermi level EF. The explanation behind the (E − EF)

2-character is simple:
the Pauli principle restricts the available phase space for transitions. On the other hand, the
determination of the a-prefactor requires further, reasonable approximations. The statistical
and dynamical correlation effects are encoded in it.

Depending on the starting concept to model the interacting electron system of a metal,
two main approximations are used. The first one [2, 3] considers the system as a medium
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described by its complex dielectric function, i.e., via the random-phase approximation (RPA).
The other approximation, the kinetic model [3, 4], considers directly the screened particle–
particle interaction. The physical mechanism for the decay of an excited state is the same in both
treatments: the scattering rate is mediated by an effective interaction. In both approximations
the energy and momentum conservations are satisfied.

Comparing the RPA-based dielectric and the scattering-amplitude-based kinetic
frameworks, it was explicitly stated [3] that the kinetic one represents the more general attempt
at ε = (E − EF) < EF excess energy for a homogeneous system of fermions. The constraints
under which the two approximations give the same expression for the lifetime were stressed
recently: one has to implement the kinetic theory with the RPA-based instantaneous effective
interaction and, in addition, apply a first-order Born scattering treatment [5]. Under these
conditions the lowest-order result, denoted now by a(1)(λ, rs), is

a(1)(λ, rs) = 1

πvF

1

λ3

(
arctan γ +

γ

1 + γ 2

)
, (1)

in which γ = (2vF)/λ and λ ≡ λTF = (4vF/π)1/2, the so-called Thomas–Fermi screening
parameter [2, 3, 6]. The Fermi velocity (vF) and the density parameter (rs) are defined as
usual: vF = (3π2n0)

1/3 and rs = 1.92/vF at a given density n0 of the 3D electron gas.
It is difficult to determine the accuracy of the mentioned approximations without going

on, even with a fixed interaction between quasiparticles, to higher-order approximations.
Furthermore, we note that a quasiparticle may, in a certain sense, be treated like a particle
in the ‘self-consistent’ field of the other particles. But one should made allowance [7] not only
for the effect of surrounding particles on the potential energy. It is the dynamical correlation
of electrons which reduces the Coulomb repulsion between them. This aspect is not contained
in a simple SCF approximation like the RPA. The added electron is a ‘moving impurity’
with velocity around vF. Clearly, the consistency problem, namely the interplay between the
scattering and screening aspects, is not trivial.

Reliable data on the a-prefactor are given by experiments performed [8, 9] with cold
(T = 5 K) scanning tunnelling microscopy (STM) on noble metal surfaces. The advantages
of STM over different photoemission techniques are the capability

(i) to choose a spot bare of impurities (reduction of nonlifetime effects), and
(ii) to probe the electron dynamics (correlation) locally without depopulation and cascade

problems.

Notice, in addition, a few important aspects. The probed portion of the band-related k-space
is not exactly known and may depend on the tip geometry [10]. The other aspect is the usually
neglected feedback effect of inelastic transitions. The injected electron and the decay process
perturb the one-electron band structure back toward the free-electron-like band [11].

A quantitative prediction for the inelastic scattering rate has been subtracted (firstly
in [8], using elastic tunnelling theory) from interference patterns generated on an Ag(111)
surface and compared with the (1/τee) = aε2 expression down to about ε = 1 eV excess
energy. The subtraction is based on an analysis of measured amplitude damping in the
oscillating local density of states by assuming a homogeneous medium in which local inelastic
scatterings result in the (exponential) damping. It was explicitly stated that the data follow
the (E − EF)

2-dependence, a 3D Fermi-liquid character. The 2D electron gas formed on
noble-metal surfaces is surrounded by 3D electrons [12] which may essentially influence the
screening and govern damping behaviours [8]. The predicted aexp-value for the Ag target is
higher than the value that equation (1) would give with the usual λ = λTF for a 3D electron
gas: aexp(Ag) = 1.58a(1)(rs = 3). The enhancement (1 → 1.58) was attributed to the
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band structure and associated in-plane inelastic scattering effects [8]. The other experimental
work [9], using the same subtraction tools, confirms the above aexp(Ag) value down to
ε = 0.4 eV.

Any theoretical attempt, with the aim to explain, by one model assumption, the observed
enhancement in 1/τ down to ε = 0.4 eV, is constrained with standard paradigms. The band-
based version of the RPA dielectric theory, namely the GW framework [13] for real targets,
focuses on the role of specified (in k-space) single-particle states, usually the unperturbed
ones in a Hartree–Fock-like picture [14]. Of course, it is expected that higher-order effects
‘will certainly give numerical changes’ [15] to this lowest-order treatment for an energy width
�(∼h̄/τ).

The kinetic framework may allow more controllable modifications of the conditions
stated at equation (1), but still uses the homogeneous liquid picture. As a conservative step
in comparative studies (and motivated by the above-outlined experimental interpretation of
measured amplitude damping), we shall use this framework and focus on the interplay between
screening and scattering.

2. Theory and results

Since we are interested in decays close enough to the Fermi surface, all the colliding particles
remain very close to this surface. The resulting decoupling (a characteristic feature of a
degenerate system) of the angular and energy variables makes the calculation for a(rs) easier.
Denoting by θ the usual scattering angle, and by α the angle between the two incoming
momenta in the centre-of-mass (c.m.) system, we can write [3, 4]

a(rs) = 1

(2π)4

[
w(α, θ)

cos(α/2)

]
av

, (2)

in which w(α, θ) is the transition probability for the collision process. By energy conservation,
the scattering energy (Ec) in the c.m. system is determined via cos α = 1 − (Ec/EF).

The average (av) is defined [3, 4] as follows:[
w(α, θ)

cos(α/2)

]
av

= 1

2π

∫ π

0
dθ

∫ π

0
dα sin α

w(α, θ)

cos(α/2)
. (3)

In the knowledge of a screened (well-behaved) potential one can formulate w(α, θ) in terms
of a stationary scattering amplitude by using for it, e.g., a second-order Born approximation
and (numerical) partial wave expansion.

In order to show the effect of the higher-order term clearly, we model the effective
interaction by a Thomas–Fermi-type potential Vsc(r) = (1/r) exp(−λr). For this potential
form the required first- and second-order scattering amplitudes are well-known [16]. By using
the real part of this amplitude one gets, up to the next-to-leading order, the following expression
for the w(α, θ) quantity:

w(α, θ) = 2π(2π/µ)2

(q2 + λ2)

[
1

(q2 + λ2)
− 2

2µ

q f
arctan

qλ

2 f

]
, (4)

in which µ = 1/2 is the reduced mass, f 2 = λ4 + 4λ2k2 + k2q2, with k = vF sin(α/2) and
q = 2k sin(θ/2).

A restriction to the first term in the parentheses (first-order Born) gives equation (1) with
the λ screening parameter. The special sensitivity τ ∼ λ3 is strong. A 25% increase in λ gives
a factor of two in τ , showing the importance of a proper treatment of the screening parameter.
The unmodified equation (1) could describe the aexp-value with a certain λ < λTF. On the
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Figure 1. The ratio R of the next-to-leading and the leading terms, obtained in a second-order
description of the low-energy lifetime, as a function of the density parameter rs. The three options
for the screening parameter, λTF, λY, and λNP are referred by dotted, chain, and solid curves,
respectively.

other hand, if the screening is relatively weak the applicability of a simple first-order Born
approximation is in doubt [17]. By substituting the complete form of equation (4) into (3) one
can perform numerical calculations and obtain the second-order Born result [a(sB)(rs)]. Note
that the a(sB)(rs) = a(1)(rs) − a(2)(rs) notation for the perturbative numerical results will be
used below.

Now, we discuss the important question of choosing an input λ(vF). The RPA-based
long-wavelength (Thomas–Fermi limit) prescription gives the λTF = (4vF/π)1/2 estimation.
By considering the fact that an electron is not a static impurity, Young [18] arrived at the value
λY = (1/2)1/2λTF. He employed a very sophisticated coordinate transformation on a Slater
determinant in order to allow the proper consideration of dynamical correlation in the pair
function of electrons. The variational method of Nozieres and Pines [19], by investigating the
screened exchange and Coulomb correlation energies for metallic densities, results in an even
more reduced average screening with λNP

∼= 0.58λTF. We shall use the λ ∈ [λNP, λTF] range
in our calculation on the observable quantity a(rs).

The representative results are exhibited in three figures. In figure 1 we plot the ratio (R),
defined by R = a(2)(rs)/a(1)(rs), as a function of the parameter rs = (9π/4)1/3/vF. The
three options, λTF, λY, and λNP are referred by dotted, chain, and solid curves, respectively.
Although the a(rs) results are sensitive (see figures 2 and 3) to the particular value of λ(rs),
the ratio is quite insensitive to it. Motivated by figure 1 we approximate the second-order
result with a(sB)(rs) = a(1)(rs)[1 − R(rs)]. A simple relationship R ∼= (0.2 − 0.25)rs gives
the possibility of accurate analytical estimations for different densities, at least within the
limitation of a second-order approximation. Notice, parenthetically, that by a simple sign
changing in the second term of equation (4), and thus of R, one could model the lifetime of an
extended hole state at small |ε|.

The R = 1 value, as the limit of physically meaningful results, appears at about rs ≈ 4−5.
The mathematical limitation, i.e., the problem of convergence [17] in an asymptotic series
expansion like the Born series, puts down the validity limit of the quadratic description to
about rs = 2. Of course, the first-order result has an even more constrained limitation; it is
valid at high densities for an acceptable screening: λ � λTF.
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Figure 2. The calculated a(rs) functions in different scattering approximations, with λNP(rs)

screening parameter. Solid curve: phase-shift-based determination of the scattering amplitude.
Dashed and dotted curves: first- [a(1)(rs)] and second-order [a(sB)(rs)] Born approximations.
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Figure 3. The same as in figure 2, with λTF(rs) screening.

The above statements are illustrated in detail in figures 2 and 3. They show, for the
important range of rs, the results obtained for a(rs) in different scattering approximations by
using λNP(rs) and λTF(rs) screening parameters, respectively, as limiting values for λ. The
solid curves are based on numerical solutions for phase shifts in order to describe [5] the
scattering amplitudes in the partial-wave representation:

f (θ) = 1√
Ec

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ), (5)

in which δl(Ec) are the numerically determined phase shifts. Thus the transition probability
to be introduced in equation (3) is [20] w(α, θ) = 2π(2π/µ)2| f (θ)|2. The dashed and dotted
curves in these figures refer, respectively, to the first- [a(1)(rs)] and second-order [a(sB)(rs)]
Born expansions for the scattering amplitude. The second-order treatment gives improvements,
but at lower densities a nonperturbative estimation is needed for the relaxation time.
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Remarkably, a simple expression of practical interest,

a(rs) = a(1)(λ, rs)

1 + 0.25rs
, (6)

gives a very accurate fit to both solid curves of figures 2 and 3. This equation allows a
transparent interpretation: the nominator, a(1)(λ, rs) of equation (1), encodes the special
screening sensitivity (a ∼ λ−3; see the figures) and the denominator corrects its perturbative
nature. It turns out that the physically best-motivated λY = 1.1/

√
rs prescription results

in atheor(rs = 3) ∼= aexp(Ag), using the phase-shift-based expression of equation (6).
This theoretically motivated reduced screening parameter is in complete agreement with a
phenomenologically introduced one [21]. The authors of [21] also point out the importance
of the reduction in modelling interaction potentials in silver and gold nanoparticles.

We should note, for completeness, that for ε ∈ [0.1, 0.4] eV the experimental data [9]
herald a further lowering in the subtracted lifetime (τ ). This is, in fact, the energy range in
which the unperturbed (ground state) one-particle surface state exists. Supposing that the
relaxation length Lφ(∼ τ ) fitted in [8, 9] and, therefore, the subtracted exponential amplitude
damping is still not influenced by the step position, one may attribute the deviation to an
ε-independent, i.e., phonon-assisted attenuation 1/τep. Under the experimental conditions,
T � ωD � ε (where the Debye frequency is about ωD = 20 meV), this channel gives [22] a
constant contribution which can be added to the electron–electron part at low ε-values, using
the (1/τ) = (1/τee) + (1/τep) expression. We state that with a small constant value of about
(1/τep) 	 2.5 meV, one could describe the data [8, 9] down to ε = 0.1 eV. This small value
seems to be consistent with an electron-gas-like behaviour. It is about 2/3 of the previously
applied [9] value for 1/τep, obtained by using a linearly screened pseudopotential [23]. A
quadratic effect in the effective valence screening might be a possible source in coupling
reduction (see also [21]).

3. Conclusions

The present theoretical attempt is based on the Fermi-liquid model. Therefore, making
predictions for experiments or drawing quantitative conclusions about the interactions in a
given metal proves possible only in exceptional cases, i.e., for quasi-homogeneous systems.
As this is the experimental situation, we consider the agreement for τee as an important step
in comparative studies on a fundamental one-particle characteristic of many-body origin. The
important ingredients of our consistent description are the proper screening parameter and the
nonperturbative treatment of electron–electron scattering.

In addition, we remark that in the density-fluctuation-based many-body approximation,
the GW [13] method, attempts to go to higher order in a perturbation expansion are rare; for
a recent detailed discussion see [24]. The coupled Hedin’s equations are integro-differential
equations and, therefore, require a nontrivial mathematical analysis in formal expansions [25].
The kinetic framework, applied in this work, indicates that the interplay between screening
and scattering (see equation (6)) is a nontrivial question for dynamically correlated particles
in their environment. Any theoretical attempt should consider this consistency problem.
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